$[0,2 \pi]$ में $\alpha$ के उन मानों की संख्या, जिनके लिए $2 \sin ^{3} \alpha-7 \sin ^{2} \alpha+7 \sin \alpha=2$ है
$6$
$4$
$3$
$1$
किसी त्रिभुज के कोण $\alpha, \beta, \gamma$ समीकरण $2 \sin \alpha+3 \cos \beta=3 \sqrt{2}$ और $3 \sin \beta+2 \cos \alpha=1$ को संतुष्ट करते हैं। तब कोण $\gamma$ है -
समीकरण $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ का व्यापक हल है
यदि समीकरण $8 \cos x \cdot\left(\cos \left(\frac{\pi}{6}+x\right) \cdot \cos \left(\frac{\pi}{6}-x\right)-\frac{1}{2}\right)=1$ के अंतराल $[0 . \pi]$ में सभी हलों का योग $k \pi$ है, तो $k$ बराबर है
यदि $\cos 7\theta = \cos \theta - \sin 4\theta $, तो $\theta $ के व्यापक मान हैं
समीकरण $2 \sin 3 x+\sin 7 x-3=0$ के ऐसे वास्तविक समाधानों की संख्या जो अन्तराल $[-2 \pi, 2 \pi]$ के बीच है, निम्नलिखित है